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1
2

Abstract 3

The paper deals with model predictive control (MPC) of nonlinear hybrid systems with discrete inputs based on reachability 4

analysis. In order to implement a MPC algorithm, a model of the process that we are dealing with is needed. In the paper, a hybrid 5

fuzzy modelling approach is proposed. The hybrid system hierarchy is explained and the Takagi–Sugeno fuzzy formulation for 6

hybrid fuzzy modelling purposes is tackled. An efficient method of identification of the hybrid fuzzy model is also discussed. 7

An algorithm that is – due to its MPC nature – suitable for controlling a wide spectrum of systems (provided that they have 8

discrete inputs only) is presented. 9

The benefits of the algorithm employing a hybrid fuzzy model are verified on a batch reactor example. The results suggest that by 10

suitably determining the cost function, satisfactory control can be attained, even when dealing with complex hybrid–nonlinear–stiff 11

systems such as the batch reactor. 12

Finally, a comparison between MPC employing a hybrid linear model and a hybrid fuzzy model is carried out. It has been 13

established that the latter approach clearly outperforms the approach where a linear model is used. 14

c© 2007 Published by Elsevier Ltd 15

Keywords: Fuzzy systems; Hybrid systems; Model predictive control
16

1. Introduction 17

Dynamic systems, which involve continuous and discrete states, are called hybrid systems. Most industrial 18

processes contain continuous and discrete components, for instance discrete valves, on/off switches, logical overrides 19

etc. The continuous dynamics are often inseparably interlaced with the discrete dynamics; therefore a special approach 20

to modelling and control is required. At first the topic was not treated systematically [24]. Lately however, hybrid 21

systems have received much attention from the computer science and control community. 22

In recent years, some hybrid fuzzy identification methods have been proposed. A hierarchical identification of the 23

resulting fuzzy switched system is introduced in [17]. Furthermore, two structure-selecting methods for nonlinear 24

models with mixed discrete and continuous inputs are presented in [10]. 25

Many control methods employ system models described as mixed logical dynamical (MLD) [5]. A lot of interest 26

has also been devoted to piecewise affine (PWA) systems [21], which have been proven to be equivalent to many 27
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classes of hybrid systems [12]. In addition, MLD systems can be converted into PWA form as well [4]. The optimal1

control problem for discrete-time PWA systems can be converted to a mixed-integer optimization problem and solved2

on-line [6,16]. On the other hand, in [14,3,7] the optimal control problem for PWA systems is treated by solving a3

number of multiparametric programs off-line. A solution in the form of a PWA state feedback law is obtained, which4

can be efficiently implemented on-line.5

The methods consider mainly systems with continuous inputs, despite the fact that the (multiparametric) mixed-6

integer linear/quadratic programming (mp-MIQP/MILP) based solutions can be applied to systems with discrete7

inputs as well. However, the computational complexity increases drastically with the number of discrete states, and8

thus the methods can become computationally too demanding. An algorithm for efficient model predictive control of9

hybrid systems with discrete inputs only is proposed in [18].10

Most of previous work related to model predictive control of hybrid systems is based on linear models. In this11

paper, we propose the use of a hybrid fuzzy model for model predictive control of nonlinear hybrid systems with12

discrete inputs based on reachability analysis [20].13

The outline of the paper is as follows. In Section 2, modelling of a hybrid fuzzy model is discussed. It is followed14

by Section 3, where identification of the model is dealt with. In Section 4, an algorithm for model predictive control of15

systems with discrete inputs based on reachability analysis is treated. In the following sections, a batch reactor process16

is introduced. Modelling and identification of the process are tackled and the control algorithm is verified by means17

of a simulation experiment. Finally, a comparison between MPC employing a hybrid linear model and a hybrid fuzzy18

model is carried out.19

2. Modelling of a hybrid fuzzy model20

In order to implement the control algorithm a model of the treated process is needed. The complex hybrid and21

nonlinear nature of many processes met in practice causes problems both in modelling and identification; therefore22

obtaining a model that is suitable for MPC is often a difficult task. Classical modelling and especially identification23

methods that originate from linear-system theory are inadequate for treating such systems. Hence, the need for special24

methods and formulations in dealing with hybrid systems is more than evident.25

Dynamic systems are usually modelled by feeding back delayed input and output signals. In the discrete-26

time domain a common nonlinear model structure is a NARX (Nonlinear AutoRegressive with eXogenous inputs)27

model [19], which gives the mapping between the past input–output data and the predicted output.28

ŷp(k + 1) = F(y(k), y(k − 1), . . . , y(k − n + 1), u(k), u(k − 1), . . . , u(k − m + 1)). (1)29

Here y(k), y(k − 1), . . . , y(k − n + 1) and u(k), u(k − 1), . . . , u(k − m + 1) denote the delayed process output30

and input signals, respectively. Hence, the model of the system is represented by the (nonlinear) function F .31

2.1. Hybrid system hierarchy32

As already mentioned, many processes met in practice demonstrate a hybrid nature, which means that the33

continuous dynamics are interlaced with the discrete dynamics. A special class of such systems is called switched34

systems, where the continuous states remain continuous even when the discrete states are changed, i.e. no jumps of35

the continuous state vector are allowed. In this paper we are dealing with a hybrid systems represented by a hierarchy36

of discrete and continuous subsystems where the discrete part is atop the hierarchy. A discrete-time formulation is37

described in Eqs. (2) and (3).38

x(k + 1) = fq(x(k),u(k)) (2)39

q(k + 1) = g(x(k), q(k),u(k)). (3)40

Here x ∈ Rn is the continuous state vector and u ∈ Rn is the input vector. q ∈ Q (where Q = {1, . . . , s}) is the41

discrete state, which defines the switching region. The hybrid states are hence described at any time-step k by the set42

of states (x(k), q(k)) in the domain Rn
× Q.43

The local behavior of the model described in Eq. (2) depends on the discrete state q(k), which defines the current44

function fq .45

Please cite this article in press as: G. Karer, et al., Model predictive control of nonlinear hybrid systems with discrete inputs employing a hybrid
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Eq. (3) introduces a generalization of the strict Witsenhausen hybrid system formulation [25] in the sense that the 1

discrete state in the next time-step q(k + 1) depends on the input vector u(k) as well as on the continuous state vector 2

x(k) and the current discrete state q(k). 3

The continuous part of the system is generally nonlinear; therefore it can be modelled by a Takagi–Sugeno fuzzy 4

subsystem as shown in Section 2.2. 5

Once both the discrete model and the continuous model are obtained, there are two obvious ways of merging them 6

into a whole. 7

• The discrete part of the model selects which of the continuous models fq to use at time-step k. The selection is 8

based on the current discrete state q(k). Hence, we are dealing with a multimodel approach. 9

• The discrete part of the model is included in the fuzzy formulation of the continuous part by using a corresponding 10

number of additional crisp membership functions. 11

2.2. Takagi–Sugeno fuzzy formulation 12

In order to approximate a nonlinear system, a fuzzy formulation can be employed. Fuzzy models can be regarded 13

as universal approximators, which can approximate continuous functions to an arbitrary precision [9,11]. 14

The system dynamics can be formulated as a Takagi–Sugeno fuzzy model. In this instance, the rule base of the 15

fuzzy system is given in Eq. (4). 16

R j : if x1 is A j
1 and . . . and xN is A j

N then y = f j (x1, . . . , xN ), j = 1, . . . , K . (4) 17

The if-parts (antecedents) of the rules describe fuzzy regions in the space of input variables. Here x1, . . . , xN are 18

input variables of the fuzzy system and A j
i are fuzzy sets characterized by their membership functions. The number 19

of relevant fuzzy rules in the fuzzy model is K . 20

Generally speaking, the number of fuzzy rules in the fuzzy model K depends on the number of membership 21

functions for each antecedent variable x1, . . . , xN . The membership functions have to cover the whole operating area 22

of the system. What is more, the rules have to distinguish all possible combinations of the membership functions in 23

the antecedent variable space. Hence, K is a product of the number of membership functions for each antecedent 24

variable x1, . . . , xN . 25

The then-parts (consequences) are functions of inputs. Here y is an output variable. There is one function of inputs 26

f j defined for each rule R j
; j = 1, . . . , K , in the fuzzy model. In general, f j can be a nonlinear function. However, 27

usually a linear function f j is used as shown in Eq. (5). 28

R j : y = f j (x1, . . . , xN ) = a1 j x1 + · · · + aN j xN + r j , j = 1, . . . , K . (5) 29

In this case a1 j , . . . , aN j and r j denote consequent parameters. 30

The output of the Takagi–Sugeno fuzzy model is given by the following equation. 31

y =

K∑
j=1

β j (x1, . . . , xN ) · f j (x1, . . . , xN ) 32

=

K∑
j=1

β j (x1, . . . , xN ) · (a1 j x1 + · · · + aN j xN + r j ), j = 1, . . . , K . (6) 33

Here β j (x1, . . . , xN ) represents the normalized degree of fulfillment. It is obtained by using a T -norm [22]. In our 34

case it is a simple algebraic product given in Eq. (7). 35

β j (x1, . . . , xN ) =

µ
A j

1
(x1) · · · · · µ

A j
N
(xN )

K∑
i=1

µAi
1
(x1) · · · · · µAi

N
(xN )

. (7) 36

Please cite this article in press as: G. Karer, et al., Model predictive control of nonlinear hybrid systems with discrete inputs employing a hybrid
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Here µ
A j

1
(x1) . . . µA j

N
(xN ) denote the membership values [1,2,22]. The normalized degrees of fulfillment for the1

whole set of rules are written in the vector form in Eq. (8).2

β(x1, . . . , xN ) = [β1β2, . . . , βK ]. (8)3

We assume the normalized degrees of fulfillment, which are generally time dependent, comply with Eq. (9) for4

every time-step k.5

K∑
j=1

β j (k) = βT(k)I = 1. (9)6

Here I is the unity vector.7

From Eqs. (6) and (8) the output of the fuzzy system can be written as in Eq. (10).8

y = βTa1x1 + · · · + βTaN xN + βTr =

N∑
i=1

βTai xi + βTr. (10)9

Here ai and r denote fuzzyfied parameters of the model as written in the following equations.10

aT
i = [ai1 . . . ai K ]

rT
= [r1 . . . rK ].

(11)11

So far we have been dealing with a general formulation of a Takagi–Sugeno fuzzy system. The fuzzy model12

represents a universal mapping between its inputs (x1, . . . , xN ) and its output y. In the field of MPC, however, we are13

interested in obtaining a predicted output in the next time-step ŷp(k + 1).14

According to Eqs. (1), (4) and (10), we can use the fuzzy model as a predictor by treating the fuzzy model output15

at time-step ky(k) as the predicted output in the next time-step ŷp(k + 1). In this case, the fuzzy model inputs at time-16

step k(x1(k), . . . , xN (k)) denote a suitable regressor, which depends on the order of the system n and the number of17

relevant inputs m.18

For instance, let us assume we are dealing with a first-order SISO system (n = 1,m = 1). In this case the NARX19

formulation (1) can be written as follows.20

ŷp(k + 1) = F(y(k), u(k)). (12)21

The regression vector in this case consists of the current output y(k) and the current input u(k) and the output22

equation of the fuzzy model can be derived from (10) as follows.23

ŷp(k + 1) = βTa1 y(k)+ βTa2u(k)+ βTr. (13)24

In general, fuzzy models can have multiple inputs and outputs (also known as multivariable models).25

In the case where the system has several outputs, the functions of inputs f j can be regarded as vector functions.26

However, when modelling and identifying we can concern ourselves only with single-output fuzzy models and27

accordingly presume f j to be a scalar function. In the case of modelling a multiple-output process, several models in28

parallel can be used instead, without any loss of generality.29

On the other hand, if the system has several inputs (m > 1), the regression vector is simply extended so as to30

include all the relevant inputs. A similar approach can be taken into consideration when dealing with higher-than-31

first-order processes (n > 1). The regression vector therefore comprises all system outputs from past time-steps32

y(k − 1), . . . , y(k − n + 1) needed for predicting ŷp(k + 1).33

However, in the case where it is possible to measure the relevant system states, which can substitute the system34

outputs from the past time-steps y(k−1), . . . , y(k−n+1) in order to predict ŷp(k+1), it is generally more adequate to35

employ several (simpler) first-order models running in parallel in place of a single nth-order model for MPC purposes.36

If such first-order models are not feasible, it is still suitable to employ several lower-than-nth-order models instead.37

To put it another way, it is generally reasonable to make use of all the available data measured in a single time-step.38

However, due to unmeasurable system states it is sometimes not possible to undertake such approach.39

Please cite this article in press as: G. Karer, et al., Model predictive control of nonlinear hybrid systems with discrete inputs employing a hybrid
fuzzy model, Nonlinear Analysis: Hybrid Systems (2007), doi:10.1016/j.nahs.2006.06.005
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3. Identification of the hybrid fuzzy model 1

The affine Takagi–Sugeno fuzzy system with a common consequence structure (described in Section 2.2) can be 2

expressed as a global linear model. The input-dependent parameters given in Eq. (14) can be derived from Eq. (11). 3

ãi (x1, . . . , xN ) = βT(x1, . . . , xN )a1

r̃(x1, . . . , xN ) = βT(x1, . . . , xN )r.
(14) 4

In this case the fuzzy model output (10) can be described as in the following equation. 5

y =

N∑
i=1

ãi (x1, . . . , xN )xi + r̃(x1, . . . , xN ). (15) 6

Since the inputs of the fuzzy system (x1, . . . , xN ) are generally speaking time dependent, the procedure can be 7

regarded as instantaneous linearization of the fuzzy model [1,2]. 8

According to Eq. (9), it is possible to transform Eq. (10) into 9

βT(k)Iy = βT(k)a1x1 + · · · + βT(k)aN xN + βT(k)r (16) 10

which can be written in the following form. 11

K∑
j=1

β j (k)y =

K∑
j=1

(β j (k)a1 j x1 + · · · + β j (k)aN j xN + β j (k)r j ). (17) 12

Eq. (17) can be separated into K equations (18). 13

R1:β1(k)y = β1(k)a11x1 + · · · + β1(k)aN1xN + β1(k)r1

...

RK :βK (k)y = βK (k)a1K x1 + · · · + βK (k)aN K xN + βK (k)rK .

(18) 14

To identify a fuzzy system means to obtain the fuzzy model parameters a1, . . . , aN and r. For each rule 15

R j
; j = 1, . . . , K , the following form of regressor is used. The regressor is generally time dependent, so it can 16

be formulated as in Eq. (19) for every time-step k. 17

ψT
j (k) = [β j (k)x1(k) . . . β j (k)xN (k) β j (k)1]. (19) 18

The regression matrix 9 j for the rule R j in Eq. (20) is obtained by using the whole group of input data of the 19

fuzzy system. According to Eq. (19), k runs from 1 to P , where P is the number of data pairs. However, only data 20

pairs from time-steps k that comply with the condition in Eq. (21) are actually used for constructing the regression 21

matrix 9 j . Here δ denotes a small positive number. Since the model parameters are obtained by matrix inversion as 22

described later, compliance with Eq. (21) is necessary for obtaining suitably conditioned matrices. 23

9 j =

ψ
T
j (1)
...

ψT
j (P)

 (20) 24

β j (k) ≥ δ. (21) 25

The output variable of the fuzzy system y, which corresponds to the rule R j , is written in Eq. (22). 26

y j (k) = β j (k)y(k). (22) 27

It is included in the output data vector, which corresponds to the rule R j as written in Eq. (23). Again, only data 28

pairs from time-steps k that comply with the condition in Eq. (21) are actually used for constructing the regression 29

Please cite this article in press as: G. Karer, et al., Model predictive control of nonlinear hybrid systems with discrete inputs employing a hybrid
fuzzy model, Nonlinear Analysis: Hybrid Systems (2007), doi:10.1016/j.nahs.2006.06.005
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matrix 9 j .1

Y j
=

β
j y(1)
...

β j y(P)

 . (23)2

The output of the fuzzy model y j (k) in time-step (k) corresponding to the rule R j is written in Eq. (24).3

y j (k) = ψT
j (k)2 j . (24)4

Here vector 2 j contains the parameters of the fuzzy model for the rule R j .5

R j : 2T
j = [a1 j . . . aN j r j ]. (25)6

According to Eqs. (20), (23) and (24), the fuzzy model parameters for the rule R j can be obtained using the least7

squares method as written in Eq. (26).8

R j : 2 j = (9T
j 9 j )

−19T
j Y j . (26)9

By calculating the fuzzy model parameters for the whole group of rules R j
; j = 1, . . . , K , the fuzzy model10

parameters described in Eq. (18) can be obtained.11

The parameters of the fuzzy model are estimated on the basis of measured input–output data using the least squares12

optimization method. The approach is based on decomposition of the data matrix 9 into K submatrices 91, . . . ,9K .13

Hence, the parameters for each rule R j
; j = 1, . . . , K , are calculated separately. Due to better conditioning of the14

submatrices 91, . . . ,9K comparing to the conditioning of the whole data matrix 9, this approach leads to a better15

estimate of the fuzzy parameters, or to put it in another way, the variances of the estimated parameters are smaller16

compared to the classical approach given in literature [1,2,22,23].17

The described instantaneous linearization generates the parameters of the global linear model (see Eq. (14)), which18

depends on the antecedents of the fuzzy system x1, . . . , xN . In the case of MPC, the global linear parameters can be19

used directly to predict the behavior of the system. In this case, the controller has to adapt to the dynamic changes20

on-line.21

4. Model predictive control of systems with discrete inputs based on reachability analysis22

Model predictive control is an approach where a model of the system is used to predict the future evolution of the23

system [15,8]. The most appropriate input vector is established and applied every time-step. Its determination is an24

optimization problem that is solved within a finite horizon H , i.e. for a pre-specified number of time-steps ahead. Each25

time-step k a sequence of optimal input vectors (27) is acquired, which minimizes the selected cost function while26

considering the eventual constraints of inputs, outputs and system states. However, only the first vector of the optimal27

sequence is actually applied during the current time-step. In the next time-step, a new optimal sequence is determined28

etc.29

U k+H−1
k =

{
u(k), u(k + 1), . . . , u(k + H − 1)

}
. (27)30

4.1. Tree of evolution31

Since the proposed control algorithm is limited to systems with discrete inputs only, the evolution of the system32

over time horizons for a maximum of H steps can be illustrated by a tree of evolution as shown in Fig. 1 for H = 433

and 3 input vectors. Nodes of the tree represent reachable states and branches connect two nodes if a transition exists34

between the corresponding states.35

For a given root-node V1, representing the initial state xi = x(k|k), the reachable states are computed and inserted36

in the tree as nodes Vi , where i indexes the nodes as they were successively computed. A cost value Ji is associated37

with each new node and based on the cost value the most perspective node is selected. After labelling the node38

Please cite this article in press as: G. Karer, et al., Model predictive control of nonlinear hybrid systems with discrete inputs employing a hybrid
fuzzy model, Nonlinear Analysis: Hybrid Systems (2007), doi:10.1016/j.nahs.2006.06.005
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Fig. 1. Example of an explored tree of evolution.

as explored, new reachable states emerging from the selected node are computed. The construction of the tree of 1

evolution continues upwards first until one of the following conditions occurs: 2

• The value of the cost function (see Section 4.4) at the current node is greater than the current optimal one 3

(Ji > Jopt). 4

• The maximum step horizon has been reached (h = H ). 5

If the first condition occurs, the node is labelled imperspective and thus eliminated from further exploration. On 6

the other hand, if the node satisfies the second condition only, it becomes the new current optimal node (Jopt = Ji ), 7

whereas the sequence of input vectors leading to it becomes the current optimal one. 8

The exploration continues from the topmost step horizon, where unexplored nodes can be found etc., until all the 9

nodes are explored and the optimal input vector uopt(k) can be derived from the current optimal sequence. The optimal 10

input vector is applied to the system uopt(k) and the whole procedure is repeated at the next time-step k + 1. 11

4.2. Complexity of the control problem 12

Complexity of the control problem with discrete inputs is primarily subject to the number of binary inputs 13

of the system (mb) and the maximum horizon (H ) needed. Since there are no continuous inputs, there are 2mb 14

possible combinations of input vector values. The obtainable sequences of input vectors are given in (28). Hence, 15

the complexity of the control problem can be described as in (29). The complexity grows exponentially with the 16

number of binary inputs of the system mb and the maximum prediction horizon H . 17

U k+H−1
k ∈ {0, 1}

mb·H (28) 18

Cb = 2mb·H . (29) 19

Due to physical and technological constraints it is usually possible to select only a limited number (M) of 20

combinations of input vector values, where M < 2mb . The obtainable sequences of input vectors are given in (30). 21

The complexity of the same control problem and consequently the time needed to solve the optimization problem can 22

thus be reduced by the factor shown in (31). 23

U k+H−1
k ∈

{
u1, u2, . . . , uM

}H (30) 24

CM

Cb
=

(
M

2mb

)H

. (31) 25

Please cite this article in press as: G. Karer, et al., Model predictive control of nonlinear hybrid systems with discrete inputs employing a hybrid
fuzzy model, Nonlinear Analysis: Hybrid Systems (2007), doi:10.1016/j.nahs.2006.06.005
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4.3. Reachability analysis1

Generally, it is not always possible to apply every input vector from the selection mentioned above. Some of the2

input vectors, for instance, may lead the system into undesirable states. In every time-step, such input vectors must3

be detected and omitted, which can be done by means of reachability analysis. However, many of the reachable states4

do not lead to an optimal solution or, to put it another way, a better solution has already been found. Therefore it is5

reasonable to detect and eliminate such imperspective1 states from further exploration as early as possible, in order to6

reduce the complexity of the control problem. The algorithm is a kind of branch and bound procedure, which involves7

the generation of a tree of evolution that was described in Section 4.1.8

4.4. Cost function9

Cost function selection has a great influence on the behavior of the system, on the size of fully explored tree of10

evolution and hence on the computational complexity of the control problem. Generally, the cost function can be11

described as in (32).12

Ji = J (X k+h−1
k ,U k+h−2

k , k, h) for h = 1, 2, . . . , H ;13

where X k+h
k =

{
x(k), x(k + 1), . . . , x(k + h)

}
; where x is the vector of system states. (32)14

As said in Section 4.1, it is desired to detect and eliminate the imperspective states from further exploration as early15

as possible. Since the detection is based on comparing Ji to Jopt, it must be ensured that no better solution than the16

current optimal one can be found by continuing the exploration from the eliminated node. Therefore, the cost value17

has to be monotonically increasing with prediction step h as in (33).18

J (X k+h−1
k ,U k+h−2

k , k, h − 1) 6 J (X k+h
k ,U k+h−1

k , k, h); for h = 2, 3, . . . , H. (33)19

In (34)–(36), we have proposed a universally usable form of cost function that can easily be applied to most of the20

systems met in practice.21

J (X k+h
k ,U k+H−1

k , k, h) = J (X k+h−1
k ,U k+H−2

k , k, h − 1)
+ f (x(k + h|k), u(k + h − 1|k, k, h)) for h = 1, 2, . . . , H (34)22

f (x(k + h|k), u(k + h − 1|k, k, h)) > 0 for h = 1, 2, . . . , H (35)23

J (X k
k , {} , k, 0) = 0 for h = 0. (36)24

The function f (35) is an arbitrary non-negative function, which estimates the quality of control. Its value is25

added to the sum of cost functions calculated along the path from the root-node to the current node in the tree of26

evolution. Function f basically penalizes the predicted deviations of system states from the reference trajectory (e.g.,27

by calculating the sum of pondered squares of deviations); therefore the cost function value increases more rapidly28

along non-optimal paths in the tree of evolution. Since the function f does not have any special requirements apart29

from (35), it is relatively easy to determine a suitable cost function for an actual problem.30

It is trivial to prove that the proposed cost function complies with the condition (33).31

4.5. Holding the inputs through a number of time-steps32

The maximum time of prediction reached in the control algorithm Tpred depends on two parameters (see Eq. (37)):33

the sampling time TS and the maximum prediction horizon H .34

Tpred = H · TS . (37)35

1 Imperspective states are states that are certainly not leading to the optimal solution of the control problem.

Please cite this article in press as: G. Karer, et al., Model predictive control of nonlinear hybrid systems with discrete inputs employing a hybrid
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Since the sampling time TS is determined by factors that in most cases cannot be changed,2 the only way to reach 1

a longer time of prediction Tpred seems to be by increasing the maximum prediction horizon H . However, as said in 2

Section 4.2, on doing that the complexity of the control problem increases drastically. 3

In many cases it is possible (or even recommendable) not to change the input vector values each sampling time. For 4

instance, when the sampling time is relatively short, actuators could get overloaded. For this reason, we have proposed 5

an approach where the same input vector values are kept through several (Z ) time-steps or, to put it another way, the 6

input vector values can change only every Z time-steps. 7

In this case the maximum reachable time of prediction Tpred is determined in (38). Here HZ = H/Z is the new 8

maximum prediction horizon required to reach the desired maximum time of prediction Tpred. 9

Tpred = TS · Z · HZ . (38) 10

The complexity of the control problem (provided the Tpred is constant) can thus be reduced by the factor shown in 11

Eq. (39), or rather, a longer time of prediction Tpred can be reached, whereas the complexity increases linearly instead 12

of exponentially. 13

CZ

CM
=
(M · Z)HZ

M H =

(
Z

M Z−1

)HZ

. (39) 14

By holding the inputs through Z time-steps several objectives can be attained. 15

• Decrease the maximum prediction horizon H required to reach the desired maximum time of prediction Tpred and 16

thus reduce the complexity of the control problem. 17

• Enable a longer maximum time of prediction Tpred (with the same equipment). 18

• Enable a shorter sampling time TS while retaining the maximum time of prediction Tpred (on the same equipment). 19

• Relieve the potentially overloaded actuators. 20

We believe that holding the inputs through Z time-steps can improve control for a class of systems, where changing 21

the input vector every sample time is not needed or wanted, e.g. for stiff systems. The parameter Z should be 22

determined by means of simulation. 23

Due to a longer reachable maximum time of prediction Tpred, we expect that raising Z should cause the simulation 24

results to improve and eventually reach the optimum. On the other hand, further raising of the parameter Z is expected 25

to cause deterioration of the results, which happens because the inputs do not change frequently enough to ensure a 26

satisfactory control [13]. 27

5. Batch reactor 28

The usability of the control algorithm in combination with the hybrid fuzzy model has been verified on a simulation 29

example of a real batch reactor that is situated in a pharmaceutical company and is used in production of medicines. 30

The goal is to control the temperature of the ingredients stirred in the reactor core so that they synthesize into the final 31

product. In order to achieve this, the temperature has to follow the reference trajectory given in the recipe as accurately 32

as possible. 33

A scheme of the batch reactor is shown in Fig. 2. The reactor core (temperature T ) is heated or cooled through the 34

reactor water jacket (temperature T j ). The heating medium in the water jacket is a mixture of fresh input water, which 35

enters the reactor through on/off valves, and reflux water. 36

The temperature of the fresh input water depends on the position of the on/off valves kH and kC . There are 37

two possible operating modes of the on/off valves. In the case kC = 1 and kH = 0, the input water is cool 38

(Tin = TC = 12 ◦C), whereas if kC = 0 and kH = 1, the input water is hot (Tin = TH = 75 ◦C). 39

The ratio of fresh input water to reflux water is controlled by the position of the mixing valve kM . There are five 40

possible ratios that can be set by the mixing valve. The fresh input water share can be either 0, 0.01, 0.02, 0.05, 0.1 or 1. 41

We are therefore dealing with a system with three discrete inputs (kM , kH and kC ) and two measurable outputs (T 42

and T j ). 43

Due to the nature of the system, the time constant of the temperature in the water jacket is obviously much shorter 44

than the time constant of the temperature in the reactor core. Therefore, the batch reactor is considered a stiff system. 45

2 For example, the dynamics of the system, the accuracy of prediction needed and the eventual sampling time of sensors used etc.

Please cite this article in press as: G. Karer, et al., Model predictive control of nonlinear hybrid systems with discrete inputs employing a hybrid
fuzzy model, Nonlinear Analysis: Hybrid Systems (2007), doi:10.1016/j.nahs.2006.06.005
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Fig. 2. Scheme of the batch reactor.

5.1. Modelling and identification of the batch reactor1

A model of the batch reactor is obtained in two steps.2

• The system is divided into simpler subsystems.3

• Each discrete-time submodel is identified.4

The heat flow in the reactor system can be divided as follows.5

• Heat conduction between the reactor core and the reactor water jacket.6

• Heat conduction between the reactor water jacket and the surroundings.7

• Heat convection due to the influx of fresh input water in the reactor water jacket.8

• Heat convection due to the outflow of the heating medium from the reactor water jacket.9

In this manner it is possible to divide the unknown system into simpler subsystems and thus apply some prior10

knowledge of the system in modelling and identification. Therefore, such identification of the unknown system is11

regarded as gray-box identification.12

In order to carry out the identification, a suitable input–output data set for the batch reactor process has to be13

obtained. Therefore, we have generated a pseudo-random input signal and applied it to the batch reactor process. A14

sampling time of TS = 10 s has been used. We have recorded the measurable outputs, i.e. the reactor core temperature15

T and the reactor water jacket temperature T j . The outputs are shown in Fig. 3. A close-up is shown in Fig. 4.16

5.2. Temperature in the reactor core17

The temperature in the reactor core is influenced only by the heat conduction between the reactor core and the18

reactor water jacket, which depends on the temperature difference between the reactor water jacket T j and the reactor19

core T . Therefore, a first-order submodel can be presumed as shown in Eq. (40). Here the regressor consists of the20

temperature in the water jacket T j (k) and the temperature in the core T (k) in the current time-step.21

T̂ (k + 1) = F1(T j (k), T (k)). (40)22

Since we have surmised the heat conduction to be proportional to the temperature difference between the reactor23

core and the reactor water jacket, we can presume a linear model as in Eq. (41).24

T̂ (k + 1) = [T j (k) T (k)]21. (41)25

After conducting a least squares optimization, we obtain the system parameters 21.26

21 =

[
0.0033
0.9967

]
. (42)27

Please cite this article in press as: G. Karer, et al., Model predictive control of nonlinear hybrid systems with discrete inputs employing a hybrid
fuzzy model, Nonlinear Analysis: Hybrid Systems (2007), doi:10.1016/j.nahs.2006.06.005
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Fig. 3. Core temperature T (solid line) and water jacket temperature T j (dotted line).

Fig. 4. Core temperature T (solid line) and water jacket temperature T j (dotted line).

5.3. Temperature in the reactor water jacket 1

The temperature in the reactor water jacket T j is influenced by all the heat-flow sources previously mentioned. 2

Therefore, a submodel can be presumed as shown in Eq. (43). Here the regressor consists of the values in the current 3

time-step k of the temperature in the water jacket T j (k), the temperature in the core T (k), the fresh input water inflow 4

at the mixing valve kM (k), and the position of the cold water and hot water on/off valves kC (k)kH (k) respectively. 5

T̂ j (k + 1) = F2(T j (k), T (k), kM (k), kC (k), kH (k)). (43) 6

As said in Section 2.1 there are two ways for merging the continuous part and the discrete part of the model. For 7

the batch reactor, we have chosen the multimodel approach. 8

In this sense, it is possible to further subdivide the submodel in Eq. (43). Let us assume two operating modes. 9

Please cite this article in press as: G. Karer, et al., Model predictive control of nonlinear hybrid systems with discrete inputs employing a hybrid
fuzzy model, Nonlinear Analysis: Hybrid Systems (2007), doi:10.1016/j.nahs.2006.06.005
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Fig. 5. Membership functions.

• The first operating mode is the case when the fresh input water is hot, i.e. kC (k) = 0 and kH (k) = 1. In this case1

the model formulation in Eq. (43) is reduced to Eq. (44).2

T̂ j (k + 1) = FH (T j (k), T (k), kM (k)). (44)3

• The second operating mode is the case when the fresh input water is cool, i.e. kC (k) = 1 and kH (k) = 0. In this4

case the model formulation in Eq. (43) is reduced to Eq. (45).5

T̂ j (k + 1) = FC (T j (k), T (k), kM (k)). (45)6

Initially, let us devote ourselves to the first operating mode. Modelling and identification of the subsystem have7

been carried out in a manner similar to that described in Sections 2.2 and 3.8

The rule base of the fuzzy system is given in Eq. (46).9

Ri : if T j (k) is Ai
1 then T j (k + 1) = F j

H (T j (k), T (k), kM (k)), i = 1, . . . , K . (46)10

The antecedent part is thus defined by the temperature in the water jacket T j (k). We presume that a local system11

corresponding to an individual rule Ri is affine as written in Eq. (47).12

Ri : T j (k + 1) = a1i T j (k)+ a2i T (k)+ a3i kM (k)+ ri , i = 1, . . . , K . (47)13

Next, membership functions have to be defined. In our case, simple triangular functions are used, as shown in14

Fig. 5.15

Such a form of the membership functions ensures that the normalized degrees of fulfillment βi (T j ) are equal to the16

membership values µi (T j ) over the whole operating range for each rule Ri , respectively.17

The maxima of the membership functions are determined in order to cover the whole operating range. In this case18

the maxima are at 12, 20, 40, 60 and 70 ◦C.19

The output of the fuzzy model corresponding to rule Ri can therefore be formulated as in Eq. (48).20

T̂ i
j (k + 1) =

[
T j (k) T (k) kM (k) 1

]
2i

2. (48)21

After conducting a least squares optimization for each rule Ri , we obtain the system parameters 22.22

22 =


0.9453 0.9431 0.9429 0.9396 0.7910
0.0376 0.0458 0.0395 0.0339 0.0225

19.6748 16.7605 10.5969 3.9536 1.6856
0.3021 0.2160 0.5273 1.2701 12.0404

 . (49)23

Please cite this article in press as: G. Karer, et al., Model predictive control of nonlinear hybrid systems with discrete inputs employing a hybrid
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A similar procedure is carried out for the second operating mode. In this case the system parameters are given in 1

23. 2

23 =


0.9803 0.9740 0.9322 0.9076 0.8945
0.0025 0.0153 0.0466 0.0466 0.0111

−0.0704 −0.6956 −7.8013 −12.2555 −18.7457
0.2707 0.2033 0.5650 1.9179 5.6129

 . (50) 3

To sum up, the model of the temperature in the reactor water jacket is given in Eq. (51). 4

T̂ j (k + 1) =

{
[T j (k) T (k) kM (k) 1]22β

T if kC = 0
∧

kH = 1

[T j (k) T (k) kM (k) 1]23β
T if kC = 1

∧
kH = 0

}
(51) 5

6. Control 6

Once we have obtained the model of the process that we wish to control, we can move on to establishing the input 7

matrix, which contains every allowed combination of input vector values (see Eq. (52)). Here each column represents 8

an input vector. The rows of respective input vectors have the following meaning. 9

• The first row denotes the mixing valve input kM ∈ {0, 0.01, 0.02, 0.05, 0.1, 1}. 10

• The second row denotes the cool water on/off valve input kC ∈ {0, 1}. 11

• The third row denotes the hot water on/off valve input kH ∈ {1, 0}. 12

M =

0 0.01 0.02 0.05 0.1 1 1
0 0 0 0 0 0 1
1 1 1 1 1 1 0

 . (52) 13

In the last step we establish a suitable cost function (see Section 4.4. According to the prepositions in 14

Eqs. (34)–(36)), a simple cost function, which takes into consideration the square of deviation of the core temperature 15

T from the reference temperature Tref, is given in Eq. (53). In such a manner, control performance can be quantitatively 16

estimated along the tree of evolution. 17

J (X k+h
k ,U k+H−1

k , k, h) = J (X k+h−1
k ,U k+H−2

k , k, h − 1)+ (T (k + h)− Tref(k + h))2. (53) 18

The results of the experiment are shown in Figs. 6 and 7. The maximum prediction horizon was H = 4 and the 19

number of time-steps, through which the inputs are held, was Z = 15. 20

We can ascertain that the reference temperature Tref was well followed by the actual core temperature T . However, 21

there are still three obvious aspects where improvement is needed. 22

• The valves were moving too much. 23

• In several time-frames, control was carried out by the on/off valves, whereas the mixing valve was rather open. 24

However, such behavior had been expected, for the on/off valves can be regarded as another mixing valve, which 25

has a greater influence on the core temperature T than the actual mixing valve. 26

• Total consumption of fresh input water was too high. Again, this is due to the fact that the mixing valve was fully 27

open for too long during the experiment. 28

We tried to improve the problematic aspects of control by including a sort of penalty for the movement of the 29

valves in the cost function in Eq. (53). The modified cost function is established in Eq. (54). 30

J (X k+h
k ,U k+H−1

k , k, h) = J (X k+h−1
k ,U k+H−2

k , k, h − 1)+ w1 · (T (k + h)− Tref(k + h))2 31

+w2 · (kC (k + h) · kH (k + h − 1)) 32

+w3 · |kM (k + h)− kM (k + h − 1)| · kH (k + h − 1). (54) 33

The summands in the cost function were pondered as follows. 34

Please cite this article in press as: G. Karer, et al., Model predictive control of nonlinear hybrid systems with discrete inputs employing a hybrid
fuzzy model, Nonlinear Analysis: Hybrid Systems (2007), doi:10.1016/j.nahs.2006.06.005
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Fig. 6. Core temperature T (solid line) and reference temperature Tref (dotted line).

Fig. 7. Other system states.

• The square of deviation of the core temperature T from the reference trajectory Tref was pondered according to the1

choice of the parameter Z , in order to enable the control performance comparison among simulations employing2

different Z . w1 =
1
Z .3

• The weight w2 ponders the event of changing fresh input water from hot to cool. This prevents the changes of the4

on/off valves when there is no negative step in the reference temperature signal Tref. The weight was set as high as5

possible, but low enough to allow the on/off valves to change when a reference step occurs. w2 = 15.6

• Next, the weight for w3 was lowered, so that the control would not be taken over exclusively by the on/off valves.7

w3 = 0.03.8

The results of the experiment are shown in Figs. 8 and 9.9

We can ascertain that the reference temperature Tref was again well followed by the actual core temperature T .10

What is more, by setting the cost function right, all three problematic aspects of control have been satisfactorily11

solved.12

Please cite this article in press as: G. Karer, et al., Model predictive control of nonlinear hybrid systems with discrete inputs employing a hybrid
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Fig. 8. Core temperature T (solid line) and reference temperature Tref (dotted line).

Fig. 9. Other system states.

6.1. Comparison between MPC employing a hybrid fuzzy model and a hybrid linear model 1

In order to compare MPC employing a hybrid fuzzy model to MPC employing a hybrid linear model, we have to 2

attain the linear model for the temperature in the reactor water jacket (see Eq. (43)). The linear model can easily be 3

derived from the fuzzy model by linearizing it close to the center of the fuzzyfied operating range. In other words, we 4

have used a fixed degree of fulfillment vector β =
[
0 0 1 0 0

]
. Therefore, only one of the fuzzy regions has 5

been taken into account when identifying the linear model. In this sense, the model parameters are given in Eqs. (55) 6

and (56), whereas the output is obtained according to Eq. (57). 7

22,lin =


0.9429
0.0395

10.5969
0.5273

 (55) 8

Please cite this article in press as: G. Karer, et al., Model predictive control of nonlinear hybrid systems with discrete inputs employing a hybrid
fuzzy model, Nonlinear Analysis: Hybrid Systems (2007), doi:10.1016/j.nahs.2006.06.005
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Fig. 10. Core temperature T (solid line) and reference temperature Tref (dotted line).

Fig. 11. Other system states.

23,lin =


0.9322
0.0466

−7.8013
0.5650

 (56)1

T̂ j (k + 1) =

{
[T j (k) T (k) kM (k) 1]22,lin if kC = 0

∧
kH = 1

[T j (k) T (k) kM (k) 1]23,lin if kC = 1
∧

kH = 0

}
. (57)2

The results of the experiment with the linear model employed in MPC are shown in Figs. 10 and 11.3

A close-up of the relevant sections is presented in Fig. 12, where the reference temperature is Tref = 62 ◦C, and4

in Fig. 13, where the reference temperature is Tref = 26 ◦C. We can conclude that the MPC algorithm employing the5

hybrid fuzzy model clearly outperforms the case where the linear model is used.6

Please cite this article in press as: G. Karer, et al., Model predictive control of nonlinear hybrid systems with discrete inputs employing a hybrid
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Fig. 12. Core temperature T : Comparison between hybrid fuzzy model (better) and hybrid linear model employed in MPC. Tref = 62 ◦C.

Fig. 13. Core temperature T : Comparison between hybrid fuzzy model (better) and hybrid linear model employed in MPC. Tref = 26 ◦C.

In the third part of the experiment, where the reference temperature is Tref = 35 ◦C, the hybrid linear model 1

approximates the identified system more adequately. The control performance is therefore more comparable to the 2

case in which the hybrid fuzzy model is employed. That said, still better performance is achieved in the latter case as 3

can be seen in Fig. 14. 4

7. Conclusion 5

Model predictive control of nonlinear hybrid systems with discrete inputs based on reachability analysis was dealt 6

with. 7

In order to implement a MPC algorithm, a model of the process we are dealing with is needed. In the paper, a hybrid 8

fuzzy modelling approach was introduced. First, the hybrid system hierarchy was explained and the Takagi–Sugeno 9

fuzzy formulation for the hybrid fuzzy modelling purposes was tackled. An efficient method of identification of the 10

hybrid fuzzy model was also discussed. 11

Please cite this article in press as: G. Karer, et al., Model predictive control of nonlinear hybrid systems with discrete inputs employing a hybrid
fuzzy model, Nonlinear Analysis: Hybrid Systems (2007), doi:10.1016/j.nahs.2006.06.005
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Fig. 14. Core temperature T : comparison between the hybrid fuzzy model (better) and hybrid linear model employed in MPC. Tref = 35 ◦C.

A MPC algorithm suitable for systems with discrete inputs was treated. A universal cost function form that is1

adequate for a wide range of systems was presented. Complexity of the control method increases exponentially when2

raising the maximum prediction horizon H in order to reach a longer time of prediction Tpred. Hence, the approach3

for reducing the complexity by holding the inputs through a number (Z ) of time-steps was proposed. In addition, the4

peculiarities concerning the choice of parameter Z were tackled.5

The benefits of the algorithm employing a hybrid fuzzy model were verified on a batch reactor example. The results6

suggest that by suitably determining the cost function, satisfactory control can be attained, even when dealing with7

complex hybrid–nonlinear–stiff systems such as the batch reactor.8

Finally, a comparison between MPC employing a hybrid linear model and MPC employing a hybrid fuzzy model9

was carried out. It was established that the latter approach clearly outperforms the approach where a linear model is10

used.11
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